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Abstract- A moving horizon H, disturbance attenuation 
scheme for active suspensions with time-domain constraints is 
suggested, where closed-loop dissipation and hence H, perform- 
ance are guaranteed. By minimizing the performance level on- 
line, the closed-loop system is able to relax the performance 
requirement so as to meet hard constraints in the case of unfore- 
seen large disturbances, and to recover a better performance in 
the case of generally mild disturbances. Simulation results for a 2 
DOF quarter-car model are presented. 

Index Terms- Active suspensions, time-domain constraints, 
H, control, moving horizon strategy, dissipation. 

I. INTRODUCTION 

Performance requirements for advanced vehicle suspen- 
sions include isolating passengers from vibration and shock 
arising from road roughness (ride comfort), suppressing the 
wheels so as to maintain firm, uninterrupted contact of wheels 
to road (good handling or good road holding) and keeping 
suspension strokes within an allowable maximum (cf.[ 11). In 
order to manage the trade-off between these conflicting 
requirements, many active suspension control approaches are 
proposed (e.g. [2], [3], [4], [5], [6], [7], [8] and the references 
therein), based on various control techniques such as LQG, 
adaptive control and nonlinear control. Recently, H, active 
suspensions are intensively discussed in the context of robust- 
ness and disturbance attenuation (e.g. [9], [lo], [ll],  [12], 
[ 131, [ 141 and the references therein). 

Since requirements for good handling and keeping 
suspension strokes within an allowable maximum are in fact 
time-domain constraints, the active suspension control 
problem can be considered as a disturbance attenuation 
problem with hard constraints [15]. Hence, [16] suggests an 
LMI based constrained H, control approach to design active 
suspensions, where hard constraints are handled in their nature 
form and separately from the specification of ride comfort. 
However, in order to be prepared for unforeseen large 
disturbances, arising from for example a pronounced bump or 
pothole on an otherwise smooth road, one should choose 
larger values of the controller parameter a ,  which leads to 
worse ride comfort (larger performance level y )  even if the 
actual disturbance is rather mild. On the other hand, enforcing 

better ride comfort (smaller y ) requires smaller values of a ,  
which might result in constraint violations in case that the 
system is affected by unexpectedly large disturbances. These 
cases can be indicated in the bump responses of the 
constrained H, active suspension [16]. In order to overcome 
this dilemma, this paper continues the work of [ 161 along the 
line of on-line manage the satisfaction of constraints and the 
level of performance by implementing the constrained H, 
control scheme in a moving horizon manner, that is well- 
known in the literature of model predictive control. 

The paper is organized as follows: Section I1 summarizes 
firstly the LMI based constrained H, disturbance attenuation 
scheme discussed in [16]. Then, we implement this control 
scheme in the moving horizon fashion and discuss the stability 
and performance properties of the closed-loop system. In Sec- 
tion 111, we apply the moving horizon H, disturbance attenua- 
tion scheme to active suspension control, in the basis of a 2 
DOF quarter-car model. 

11. MOVING HORIZON H, CONTROL SCHEME 

A.  LMI based constrained H, disturbance attenuation [I 61 
For a generality, we consider the following system 

subject to output and control constraints 

Here x E R" is the vector of states, w E R"' is the vector of 
disturbance inputs, u E Rm2 is the vector of control in- 
puts, z E Rpl is the vector of H, performance controlled out- 
puts and z s R P P 2  is the vector of constrained outputs. A 
fundamental assumption for the system (1) is that ( A , B )  is 

stabilizable and (C,, A )  is detectable. Our control problem is 
to design a controller such that the closed-loop system is inter- 
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nally stable, and the H, norm from the disturbance w to the 
performance output z, is minimized, while the control and 
output constraints are respected. 

We consider the state feedback case with U = Kx and 
provide an LMI optimization based solution as follows: 
Suppose that for a given a > 0 , the semi-definite 
programming 

min y (3) 
Y,Q=Q~>O,Y ,X ,Z  

Subject to 
A Q + Q A ~ + B Y + Y ~ B ~  * * 

CiQ + 4, Y 4 -YI 

[( iZ * ]  2 0, with Z = ZT,Zii I &, ,, (4c) 

CzQ+W')T  Q [( iZ * ]  2 0, with Z = ZT,Zii I &, ,, (4c) 

CzQ+W')T  Q 

admits an (almost) optimal solution (7, Q, E) , then, the state 

feedback K = EQ-' guarantees 

(i) a disturbance attenuation level 7 for all energy 
bounded disturbances; 

(ii) the H, norm from the disturbance w to the perform- 
ance output z, is guaranteed less than 7 ; 

(iii) the output energy is bounded by Fa, if the distur- 
bance energy w,, and the initial state x(0) satisfy 
Ŷ wm + V(x(0)) I a ; 

(iv) the hard constraints in (2) are respected, if the distur- 
bance energy w,, and the initial state x(0) satisfy 
Yw,, + V(x(0)) I a . 

In (4), * represents the transpose of the corresponding ele- 
ment. With a Lyapunov-type function V ( x )  := xTPx as well 

as P = Q-' , the feasibility of (4a) leads to the dissipation 
inequality 

for the system controlled with the state feedback gain 
K = YQ-' and for allt, > t, 2 0 .  Hence, the closed-loop sys- 
tem has a disturbance attenuation level y for all energy 
bounded disturbances. Let x ( 0 )  = 0 and by V ( x )  2 0 , (5) 
becomes 

which implies the H, norm from the disturbance w to the 
performance output z, less than y . 

Moreover, it can be shown ffom (5) (see [I 71, [16]) that all 
perturbed state trajectories stay in an ellipsoid defined by 

q (P ,a)  := { x E W" I V ( x )  I a}  , (6)  

if the initial state x(0) belongs to an ellipsoid defined by 

q (P,a,w,,) := {x E W" 1 yw,, + V ( x )  I a}  (7) 

and the disturbance energy is bounded as $llw(t)llz dt I w,, . 
As a consequence, we infer 

maxIui(t)lz = maxl(rQ')i x(t)J? I maxl(YQ-')i x r  
e o  I t 0  x s q  

(8) 
2 ail[ YQ-')i I[ = a ( YQYT)ii . 

Hence, the feasibility of the matrix inequality (4b) and simi- 
larly the feasibility of the matrix inequality (4c) guarantee the 
satisfaction of constraints on controls and outputs, 
respectively. 

Furthermore, the property (iii) follows from (5 ) ,  too. And 
it suggests smaller values of the controller parameter a for 
better performance. However, the property (iv) reveals that the 
smaller the a, the smaller the disturbance energy allowed for 
guaranteeing the satisfaction of the time-domain constraints. 
This motivates to exploit the moving horizon strategy for on- 
line managing the trade-off between satisfying constraints and 
achieving high performance. 

B. Moving horizon implementation 
The basis of the moving horizon strategy in model predic- 

tive control is solving an optimal control problem on-line at 
each sampling time tk , updated by the actual state x(tk) [18]. 

In the implementation of the above LMI based H, control 
scheme in the moving horizon fashion, first of all, we have to 
include the matrix inequality 

(9) 

into the optimization problem (3) to enforce the actual state 
x(t,) belonging to the ellipsoid (7). For a given w,, , (9) is 
an LMI, too. Secondly, a dissipation constraint in the form of 

is required to guarantee the closed-loop moving horizon sys- 
tem dissipative, where pk is recursively updated as 
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Pk :=Pk-l -(.('k)' p k - l x ( t k ) - x ( z k ) T  p k x ( t k ) ) *  (1 1) 

A more detailed derivation of the dissipation constraint can be 
found in [17]. This way, the LMI optimization problem (3) 
becomes 

min y subject to LMIs (4), (9) and (10). (12) 
Y , Q = Q ~ > O , Y , X , Z  

According to the moving horizon principle of model 
predictive control, the LMI optimization problem (12) will be 
solved at each sampling time tk , updated with the actual 
state x ( t k ) .  This is implementable, since Pk-l and pk-l have 
been determined at the previous sampling time tk-l and are 
held fixed. If (12) admits an (almost) optimal solution 
(yk,Qk,yk) , we can then define a piece-wise continuous 
feedback control law as 

with Kk = 6Q;' . For the closed-loop moving horizon system, 
we state the following result. 

Theorem I: Suppose that 

( A ,  B )  is stabilizable and (C,, A )  is detectable; 
at each sampling time tk , there exist a and w,, such 
that the LMI optimization problem (12) with the actual 
state x ( t k )  as initial condition admits an (almost) opti- 
mal solution. 

Then, the closed-loop system with the moving horizon control 
law (13) has the following properties: 

(a) for vanishing disturbances it is asymptotically stable; 
(b) the time-domain constraints (2) are respected, if the 

disturbance during each sampling period satisfies 

(c) the dissipation inequality 

llZl(f)l12 - U l l ~ w l p  dt I x(to)'Pox(to) (15) 

is guaranteed for t ,  2 to,  with y := max { yo ,  yI , . ' ., yk } ; 

ance output z, is guaranteed less than y . 

Proofi By the Schur complement, (10) is equivalent to 

(d) the H, norm from the disturbance w to the perform- 

PO -Pk-l + x ( t ~ ) ' p k - l x ( f k ) - x ( t k ) ' p k x ( t k )  ' ' (16) 

Substituting (1 1) into the above matrix inequality recursively, 
we obtain that the dissipation constraint enforces 

~(x(t;)~~-lx(t,)-x(t~)~~x(ti)) i=l L 0 .  (17) 

The feasibility of (4a) at the sampling time tk implies that the 
dissipation inequality (5) is satisfied with V ( x )  = x'pkx and 
y = yk , i.e. 

(18) 

where y(t) = yk for t E [t ,  , tk+] ) . By (1 7), the above inequality 

becomes 

. .  

5 x(t0 1' p,x(to) - 4 4 , l  1' 4x(4+1) 
with y :=  max y(t) . Moreover, y <oo by the feasibility 

assumption at each sampling time. Duo to P > 0 ,  we have the 
property (c) and hence the property (d) forx(to) = 0 .  Further- 

more, the stability property (a) is shown by rllzl (f$ dt < 03 

and the detectability of (Cl,A) . At each time tk , matrix 
inequality (9) forces the actual state x( tk)  belonging to the 
initial ellipsoid SZ, (4, ak , w,, ) that in turn guaran- 

tees x ( t )  E C?, (4, ak ) for any t E [ tk , t k + l ]  , if the disturbance 
satisfies (14). Hence, we infer 

'4'0.'l+l) 

0 

Imaxl(YQ-')ix12 X E Q  Ia(YQY'),, . 

By exploiting the feasibility of (4b), the above inequality be- 
comes 

Note that the maximization in (20) is just over one sampling 
time, that is weaker than (8). Due to the moving horizon 
implementation, the above inequality is then valid for any 
tk 2 t o ,  that implies that the feasibility of (4b) guarantees the 
satisfaction of control constraints in (2), as required in (b). 
Similarly, we can show that the feasibility of (4c) guarantees 
the satisfaction of output constraints in (2). 
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Remark 1: Different from standard MPC schemes, the sug- 
gested moving horizon Ha control scheme is based on 
continuous models and feedback prediction. The solution of 
the LMI optimization problem (12) at each sampling time con- 
structs a feedback control for the continuous system, and pro- 
vides a possibility to choose a larger sampling period. This is 
attractive for practical applications. 

111. APPLICATION TO ACTIVE SUSPENSION CONTROL 

We apply in the following the suggested moving horizon 
Ha control approach to active suspension control, based on a 
2 DOF quarter-car model. Fig.1 shows the 2 DOF quarter-car 
model, where (k ,  , c, ) consist of the so-called passive suspen- 
sion; k,, stands for the tire stiffness; m, and m,, represent 
sprung and unsprung masses, respectively. Moreover, x, - x u  

is the suspension stroke, x, -x, the tire deflection andx, the 
vertical ground displacement caused by road unevenness; 
uf is the scalar active force generated by a hydraulic actuator. 

Fig. 1. 2 DOF quarter-car model with an active suspension 

With a set of state variables x, = xs - x u  , x2 = Xs , x, = xu - x, 

and x, =xu, the idea dynamics of the quarter-car model can 
be described by 

0 1 0 - 1 -  

k" c, p -m, -m, 

+ 
0 
0 
-1 

0 

where the normalized active force u = $ is considered as con- 

trol input and the ground velocity w=Xo represents the 
disturbance caused by road roughness. 

To quantify ride comfort, the body acceleration is in gen- 
eral chosen as performance output, i.e., z, = xs . In order to en- 
sure a firm uninterrupted contact of wheels to road, the dy- 
namic tire load cannot exceed the static ones [2], i.e., 

Moreover, the suspension stroke limitation in the form of 

Ixs ( t ) -x"( t )14SS,v t20  (22) 

has to be taken into account to prevent excessive suspension 
bottoming, which can lead to rapid deterioration of ride com- 
fort and possible structural damage. Both (21) and (22) are 
time-domain hard constraints. Hence, we choose suspension 
stroke and relative dynamic tire load as constrained outputs, - -T 

ku - ") . Due to actuator saturation, 
(ms +m")g 1' 

it is in addition assumed that the normalized active force is 
bounded as 

lu(t)l 41, v t  2 0 .  (23) 

As an example, model parameters take the following nominal 
values (cf.[2]): 

ms = 320kg, k, = 18--, kN cs = l E ,  mu = 40kg, 
m m 

kN 
m 

ku = 200--, SS = 0.08m, U, = 1.5kN. 

The bounds are then U, = 1, z2,,- = SS and zZz,- = 1 , 
respectively. We choose a =0.03 and w,, = O  , a detailed 
discussion on the choice of the controller parameter can be 
found in [16]. Fig.2 shows bump responses, where the corre- 
sponding ground displacement is given by 

with V being the vehicle forward velocity, A and L being 
the height and the length of the bump, respectively. The first 
bump corresponds to V = 6 5 F  , L = 5m and A = 0.1m , 

while the second bump starts at the t = 1.1s and with 
A = 0.05m. By Remark 1, the sampling period is chosen as 
0.035s that is large compared to the during of the 
disturbances (0.2769s). As a comparison, the bump response 
for the constrained H, active suspension designed with 
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a = 0.03 is plotted in Fig.2, too. For x(0) = 0 ,  this fixed Ha 
controller is guaranteed to respect hard constraints, if the 
disturbance energy is bounded by 3.4 x $ (computed by 

T ) .  Since the disturbance energy of the first and the second 

bump is respectively of 0.1728$- and 0.0446$., the fixed 
Ha active suspension has no longer guarantee. It can be clearly 
seen from the bottom picture of Fig.2 that the moving horizon 
H, active suspension respects time-domain constraints by 
relaxing on-line the performance level y , and recovers the 
performance level of the fixed Ha active suspension when the 
extreme strong disturbance (e.g. the first bump) vanishes. 
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In order to relax the performance requirement so as to meet 
time-domain constraints when unforeseen large disturbances 
happen and to recover a better attenuation level for generally 
mild disturbances, this paper has suggested a moving horizon 
Ha control scheme. The solution of the corresponding LMI 
optimization problem at each sampling time constructs a feed- 
back control for continuous systems. Hence, one can choose a 
larger sampling period to update the optimization problem, 
which is attractive for practical applications. Closed-loop 
dissipation and Ha performance are guaranteed by an addi- 
tional dissipation constraint. 

REFERENCES 

D. Hrovat, "Survey of advanced suspension developments and related 
optimal control applications," Automatica, vol. 33, no. 10, pp. 1781-1817, 
1997. 
T. Gordon, C. Marsh, and M. Milsted, "A comparison of adaptive LQG 
and nonlinear controllers for vehicle suspension systems," Vehicle System 
Dynamics, vol. 20, pp. 321-340, 1991. 
A. Ulsoy, D. Hrovat, and T. Tseng, "Stability robustness of LQ and LQG 
active suspensions," ASME J. Dynamic Systems, Measurement, and Con- 

A. Hac, "Decentralized control of active vehicle suspensions with pre- 
view," ASME J. Dynamic Systems, Measurement, and Control, vol. 117, 
pp. 478-483, 1995. 
A. Alkyne and J. Hedrick, "Nonlinear adaptive control of active suspen- 
sions," IEEE Trans. Contr. Syst. Technology, vol. 3, no. 1, pp. 94-101, 
1995. 
D. Williams and W. Haddad, "Active suspension control to improve 
vehicle ride and handling," Vehicle System Dynamics, vol. 28, pp. 1-24, 
1997. 
J . 4 .  Lin and I. Kannellakopoulos, "Nonlinear design of active suspen- 
sions," IEEE Contr. Syst. Magazine, vol. 17, pp. 45-49, 1997. 
F. Yu and D. Crolla, "An optimal self-tuning controller for an active 
suspension," Vehicle System Dynamics, vol. 29, pp. 51-65, 1998. 
M. Yamashita, K. Fujimori, K. Hayakawa, and H. Kimura, "Application 
of H- control to active suspension systems," Automatica, vol. 30, no. 11, 
pp. 1717-1729, 1994. 

trol, vol. 116, pp. 123-131, 1994. 

-. 

[lO]J. Park and Y .  Kim, "An H.. controller for active suspensions and its 
robustness based on a full-car model," in Proc. 14th IFAC World Con- 
gress, 1999, pp. 503-508. 

[11]N. Karlsson, D. M., and H. D., "Nonlinear H- control of active suspen- 
sions," in American Control Conference, Arlington, VA, 2001, pp. 3329- 
3334. 

[12]H. D. Tuan, E. Ono, and P. Apkarian, "Nonlinear H.. control for an 
integrated suspension system via parameterized linear matrix inequality 
characterizations," IEEE Trans. Contr. Syst. Technology, vol. 9, no. 1, pp. 
175-185,2001. 

[13]M. Smith and F.-C. Wang, "Controller parameterization for disturbance 
response decoupling: Application to vehicle active suspension control," 
IEEE Trans. Contr. Syst. Technology, vol. 10, no. 3, pp. 393-407,2002. 

[14]K. Hayakawa, K. Matsumoto, M. Yamashita, Y. Suzuki, K. Fujimori, and 
H. Kimura, "Robust H--output feedback control of decoupled automobile 
active suspension systems," IEEE Trans. Automat. Contr., vol. AC-44, pp. 
392-396, 1999. 

[15]H. Chen and K. Guo, "An LMI approach to multiobjective RMS gains 
control for active suspensions," in Proc. Amer. Contr. Conf., Arlington, 

[16]H. Chen and K.-H. Guo, "Constrained H- control of active suspensions: 
An LMI approach," 2003, submitted. 

[ 171C. W. Scherer, H. Chen, and F. Allgower, "Disturbance attenuation with 
actuator constraints by hybrid state-feedback control," in Proc. 41th IEEE 
Conf. Decision Contr., Dec 2002, pp. 4134-4139. 

[18]D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, "Constrained model 
predictive control: Stability.and optimality," Automatica, vol. 36, pp. 789- 
814,2000. 

VA, 2001, pp. 2646-2651. 

722 


